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A time domain force identification approach for linear system is proposed. This

approach can found a highly precise force identification model within the scope of

general computer precision while it does not cost much computing time. Although the

force identification model is accurate, the force identification process, like other inverse

structural responses. The singular value decomposition is used to reveal the intrinsically

matter of the ill-posedness of force identification problem and a regularization

technique is utilized to deal with this issue. Finally, the proposed method with the

aid of regularization technique is successfully applied to identify the input forces in two

numerical simulations.

Crown Copyright & 2010 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Accurately knowledge of the dynamic forces acting on a physical structure through its designated life can be very
important component in the design of mechanical systems, from spacecraft and processing plants to electronic circuits.
Regardless of actual application or the underlying physics, the expected force will play a key role in the determination of
system properties or parameters. Unfortunately, in many practical situations, it is difficult, if not impossible, to perform
direct measurements or calculations of the external forces acting on vibrating structures. Especially, in some cases, if force
gauges are inserted into force transfer path to measure those dynamic forces directly, these force gauges may either alter
the system properties or intrude on the load path. Instead, vibration responses can often be conveniently measured. In such
cases indirect estimating these dynamic forces by the measured structural responses in some sort of inverse model is
sometimes necessary, which means that unknown force is established as the solution to an inverse problem of force
reconstruction, based on the measured system responses, i.e. the process is considered as estimating of unknown dynamic
force acting on a mechanical system from measured responses.

In recent years various methods for solving the inverse problem associated with indirect force measurement have been
proposed, see, e.g. Steven [1], Hirotsugu et al. [2], Dobson et al. [3] and Nordstron et al. [4] for an overview and Refs. [5–9]
for more recent improvements to the force identification methods. Liu et al. [10] imposed a system identification technique
to study the force identification on a cantilever plate in state space, where the forces were estimated from the measured
systematic responses by an inverse algorithm, and the least-squares method with a recursive estimator is employed to
update the estimation in the sense of real-time computation. Adam et al. [11] used the state space formulation to found the
force identification model in time domain, in order to estimate six docking forces and moments between the Space Shuttle
010 Published by Elsevier Ltd. All rights reserved.
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and the Russian MIR Station during a numerical simulation of a docking event. Nordberg and Gustafsson [12] presented an
explicit block inversion algorithm to invert the associated upper block triangular Toeplitz matrix for reconstructing input
forces. All these methods mentioned above have obtained excellent force identification results and they mainly focused
on the effect of noise in the measured structural responses on force identification results, while seldom concerned the
round error in the sense of computation. However, in force identification process, the round error in force identification
model usually reduces the accuracy of force identification results and even leads to meaningless results. Hence, the
establishment of precise force identification model is important to force estimation results. This paper mainly concerns
the foundation of precision force identification model in the sense of computation and one part and parcel of this paper is
to establish a precise force identification model based on an idea of precise time-step integration method for Markov
parameters (PTIM-MP), which was originally presented to compute the forward problem of structural dynamics [13]. In
this work, we extend this approach to the inverse problem of force identification and found a highly accurate force
identification model within the scope of general computer precision.

Like other force identification methods, although the force identification model founded by PTIM-MP is precise, the
force identification problem is still ill-posed due to the inversion process and the white noise in the measured responses.
And the white noise may destroy the identified inputs if it is not treated properly. Jacquelin et al. [14] utilized the
regularization methods to solve the ill-posed force identification problem, where they discussed different regularization
methods to the force identification problem. Liu et al. [15] proposed a regularization algorithm to solve the inverse of an
ill-conditioned frequency response function matrix at near the frequencies of structural resonances, where the truncated
singular value decomposition filter and Tikhonov filter were used in conjunction with the conventional least schemes and
the optimum regularization parameters of these filters were selected by the Morozov’s discrepancy principle. Finally, a
total least-square scheme was also used to address the errors associated with the frequency response function matrix.
In force identification problem, the difficulties arise due to sensitivity to measurement uncertainties, and the small
measurement error could introduce a high noise level in the identification results. Hence, another aim of this paper is to
cope with the ill-posed problem in force identification process and the inherent ill-posedness of force identification
problem is disclosed with a useful numerical tool, the singular value decomposition. Finally, a Tikhonov regularization
technique is used to solve this ill-posed problem of force reconstruction, and the optimum regularization parameter is
determined by the generalized cross-validation (GCV) criterion [16].

In order to reconstruct the input force, this paper presents an algorithm based on PTIM-MP method with the aid of
regularization technique. The PTIM-MP method can found a highly precision force identification model in the scope of
general computer precision, while costs less computing time. The regularization technique is used to improve the stability
in the solution of precise force identification model. This paper is organized as following: In Section 2 the force
reconstruction algorithm based on an idea of PTIM-MP is developed briefly. The intrinsically ill-posedness of force
identification problem is disclosed in Section 3, and the regularization solution of this ill-posed problem is also depicted in
this section. In Section 4, the force reconstruction algorithm based on PTIM-MP is illustrated by two numerical tests.
Finally, some concluding remarks are summarized in Section 5.

2. Force identification of PTIM-MP in state space

2.1. Moving average model (MAM) for force identification

Consider the following generally time invariant linear system governing equation in state space,

_vðtÞ ¼HvðtÞþfðtÞ (1)

The Eq. (1) is expressed as a Hamiltonian system, where vðtÞ the response vector in state space, H the system matrix in
state space, fðtÞ the force vector in state space. The detailed derivation of Eq. (1) from a second order differential equation
of structural system excited by a force is shown in Appendix A. Supposing that the eternal force in time step of integration
is constant, the Eq. (1) can be discretized as Eq. (2) with the exponential matrix superposition algorithm.

vðkþ1Þ ¼ TvðkÞþðT�IÞH�1fðkÞ; ðk¼ 0;1;2; . . . ;NtÞ (2)

where T¼ expðADtÞ is the exponential matrix, whose computation will be further discussed in Section 2.2. Dt is the time
step of integration, and Nt is the number of sampling points in time domain. I is the identity matrix. The detailed derivation
of Eq. (2) is displayed in Appendix A. The quantities ymðtÞ are assumed to be the measured responses in this work, and the
observation quantity has the following relationships,

ymðkþ1Þ ¼Dmvðkþ1Þ ¼H0
kvðt0Þþ

Xk

i ¼ 0

Hifðk�iÞ (3)

yðkþ1Þ ¼ ymðkþ1Þ�H0
kvðt0Þ ¼

Xk

i ¼ 0

Hifðk�iÞ (4)

H0
i ¼DmTi Hi ¼DmTi

ðT�IÞH�1 (5)



ARTICLE IN PRESS

Y.M. Mao et al. / Journal of Sound and Vibration 329 (2010) 3008–30193010
where Dm the extract matrix, has the element of zeros or ones, matching the degree-of freedom (DOF) corresponding to the
measured response components. For simplicity in formulation, the Eq. (3) can be written as Eq. (4), Dyðkþ1Þ denote
the differences between the measured quantities ymðkþ1Þ and the quantities H0

kvðt0Þ, vðt0Þ is the initial condition of
structural system, if the structural system is at rest before the external is applied, the quantities Dyðkþ1Þ are equivalent to
ymðkþ1Þ. The Eq. (4) represents a moving average model of a discrete system, where the weighting matrix Hi are called
Markov parameters and H0

i is a parameter matrix related to initial condition vðt0Þ. Eq. (4) can be further formulated as
Toeplitz matrix forms

DyðNtÞ

DyðNt�1Þ

^

Dyð1Þ

8>>>><
>>>>:

9>>>>=
>>>>;
¼

ymðNtÞ

ymðNt�1Þ

^

ymð1Þ

8>>>><
>>>>:

9>>>>=
>>>>;
�

H0
Nt

H0
Nt�1

^

H0
1

2
666664

3
777775vðt0Þ ¼

H0 H1 � � � HNt�1

^ H0 HNt�2

^ ^ & ^

0 0 � � � H0

2
66664

3
77775

fðNt�1Þ

fðNt�2Þ

^

fð0Þ

8>>>><
>>>>:

9>>>>=
>>>>;

(6)

Then, it is easily to recast as follows

y¼Hf (7)

The Eq. (7) is the force identification model to reconstruct the time history of input force from the measured responses.

2.2. An algorithm based on precise time-step integration method for Markov parameter Hi

The Markov parameter matrix Hi in H determines the accuracy of MAM for force identification, therefore precise
computation of exponential matrix T plays a key role. The recently proposed precise time-step integration scheme [13] for
exponential matrix T is applied due to its stability and high precision to any desired degree, if necessary. Utilizing the
precise time-step integration method, the time interval Dt can be further divided into m¼ 2N subsections, i.e. t¼Dt=2N . N

can be any positive integer depending on the desired accuracy and equals to 20 in this paper. tcan be extremely small
sinceDtis not already large. Consequently, in the time interval Dt the matrix T can be computed with a truncated Taylor
expansion as following.

T¼ expðAtÞm ¼ ðIþTa;0Þ
m

Ta;0 �AtþðAtÞ2=2!þðAtÞ3=3!þðAtÞ4=4!

Ta;i ¼ 2� Ta;i-1þTa;i�1 � Ta;i�1

8><
>: (8)

and

ðIþTa;0Þ
m
¼ ðIþTa;1Þ

m=2
¼ ðIþTa;2Þ

m=4
¼ � � � ¼ ðIþTa;NÞ ¼ T (9)

In the computation of Eq. (8) only the exponential series expansion is approximate. Ta;0 omitts higher order items with an
error in order of 10�30OðDt5Þ, which is already smaller than a general computer accuracy because of rounding error. In
order to avoid the rounding error due to the computer precision, the third formulation in Eq. (8) is first computed, until the
Ta;N is obtained, and then the Eq. (9) is used to compute the exponential matrix T. The precise computation for exponential
matrix T can be considered as an exact solution within the scope of general computer precision, i.e. the Markov parameter
matrix Hi in matrix H is highly accurate. It should be noted that it does not cost much computing time, and the
computation process includes only 20 steps addition algorithm (in case N=20). Thus, the input force can be computed
using highly precise MAM force identification model. Although the force identification model is highly precise, the force
identification problem is still ill-posed due to the white noise in measured responses. Then we will deal with the solution
of this ill-posed problem.

3. Regularized solution to the inverse problem of force identification

3.1. The ordinary least square solution and analysis of the ill-posedness for force identification problem

The force identification problem in Eq. (7) constitutes computation of the input sequence vector f from known
measured responses y. In general, solving the inverse problem in the least square sense corresponds in the algebraic
problem that minimizes the norm of the residual as

minJHf�yJ2
2 (10)

with the straight forward solution

fLS ¼H
þ

y (11)

where fLS denotes the ordinary least squares solution of Eq. (10). In general, it follows that the existence of a unique
solution requires that the entire block matrix H is of full column rank. Therefore, the number of sensors to measure the

responses should be equal or larger than that of input forces to be identified. H
þ
¼ H

T
H

h i�1
H

T
is the Moore–Penrose
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pseudo inverse of H and H
T

is the transpose of H. For a case where the input numbers is equal to the measurement points,

H will be a square matrix and H
þ

becomes the regular matrix inverse H
�1

. Eq. (7) is a well-known ill-posed problem and
the ordinary least square solution is always worthless in many situations of force identification [2–4]. The ill-posedness of
the Eq. (7) is also related to the character of the Toeplitz matrix besides the white noise in measured responses. Hansen
briefly mentioned Toeplitz matrix regularization algorithms in the monograph [17], and then he presented modern
computational methods for treating the deconvolution and regularization problems along with the Toeplitz matrix in
Ref. [18], where a singular valued decomposition as a useful numerical tool was used to reveal the character of the Toeplitz
matrix. In this paper the singular valued decomposition is also used to disclose the ill-posedness of force identification
problem, for readability, the singular valued decomposition will be introduced briefly, and then used to disclose the
essence of the ill-posedness of the force identification problem.

For the sake of simplicity, let H 2 Rm�n be a rectangular matrix with mZn. Then the SVD of H is as the following form

H ¼USVT
¼
Xn

i ¼ 1

uisiv
T
i (12)

where U¼ ðu1 � � �umÞ and V¼ ðv1 � � �vnÞ are the matrices with orthogonal columns, UTU¼VTV¼ I, and S¼ diagðs1 � � �snÞ

has non-negative diagonal elements appearing in non-increasing order such that s1Z � � �ZsnZ0. The elements si are the
singular values of H, while the vectors of ui and vi are the left and right singular vectors of H, respectively. Two
characteristic features of the discrete ill-posed problem for force identification are usually found with the matrix theory
[19]. One case is that the singular values si decay gradually to zero with no particular gap in the spectrum and an increase
of the dimensions of H will increase the number of the small singular values. The other is that the left and right singular
vectors of ui and vi tend to have more sign changes in their elements as the index iincreases, i.e., as singular values si

decay. According to the singular value decomposition theory [19], the singular vectors have the following relations

UTU¼ VTV¼ I (13)

HH
T
¼US2UT (14)

H
T
H ¼VS2VT (15)

Consider the solution of force identification problem in least square sense, and assume for simplicity that H has no zeros
singular values. And then the Moore–Penrose pseudo inverse of H can be formulated as follows

H
þ
¼ ðH

T
HÞ�1H

T
¼ ðVS2VT

Þ
�1VSUT

¼ VS�1UT
¼
Xn

i ¼ 1

uT
i s
�1
i vi (16)

And then the ordinary least square solution of force identification problem Eq. (10) can be written as

fLS ¼
Xn

i ¼ 1

uT
i y

si
vi (17)

This equation clearly illustrates the difficulties with the ordinary least squares solution to Eq. (10), when the coefficients
juT

i yj corresponding to smaller singular values si do not decay as fast as the singular values, the ordinary least squares
solution fLS is dominated by the terms in the sum corresponding to the relative small singular values si. As a consequence,
the solution fLS has many sign changes and appears completely random. Thus the primary difficult with the inverse
problem of force identification Eq. (7) is that they are essentially underdetermined due to the cluster of small singular
values of H. Furthermore, if the measured response vector y is contaminated by the white noise, the noise in responses will
be infinitely enlarged and the obtained solution is meaningless [17].

3.2. The regularization solution to the force identification problem

In general, any attempt to solve Eq. (10) with (17) will produce worthless results unless f is restricted by some
conditions. Hence it is necessary to incorporate further information about the identified force in order to stabilize the
problem and to single out a useful and stable solution, which is the purpose of regularization.

One of the most successful and widely known regularization methods is Tikhonov regularization or the damped least
squares method. Tikhonov regularization technique was originally proposed independently by Tikhonov [20,21] and
Phillips [22]. The restrictions on identified force f are imposed by a priory bound on JLifJ2 modifying Eq. (10)–(18), The
Tikhonov regularization solution recasts the ordinary least square solution as Eq. (18), and the damped least square
solution can be written as Eq. (19).

min
n
JHfreg�yJ2

2þlJLifregJ
2
2

o
(18)

freg ¼

�
H

T
HþlLi

��1
H

T
y (19)
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where JdJ2
2 denotes the Euclidean norm of the matrices, l is a positive regularization parameter that controls the balance

between the restrictions on f and the residual norm JHf�yJ2
2. Li is typically a discrete approximation to the ith-order

derivative. In this work the zeroth-order regularization is adopted as Ref. [12] and Li is selected as identity matrix,
i.e. L0 ¼ I.

The major difficulty in applying the Tikhonov regularization technique lies in the ways to find an optimal regularization
parameter l. A good regularization parameter should yield a fair balance between the perturbation error and the
regularization error in the regularized solution. Several methods have been proposed to determine the optimum
regularization parameters [23–27]. L-curve criterion is one of the most notable ones to determine the regularization
parameter. Hansen [24] reported that the L-curve criterion is a robust method to compute the optimum regularization
parameter, but it tends to produce a regularization parameter that brings slightly over smooth solution. In this paper, the
generalized cross-validation (GCV) criterion [16] is used to choose the optimum regularization parameters, and Hansen
[23] pointed out that the GCV method indeed also seek to balance the perturbation and regularization error, in turn, is
related to the corner of the L-curve. The GCV criterion is based on the philosophy that if an arbitrary element yi of the right-
hand side y is left out, then the corresponding regularized solution should predict this observation well, and the choice of
the regularization parameter should be independent of an orthogonal transformation of y, cf. [28] for more detail. This
leads to choosing the regularization parameter which minimizes the GCV function

G¼
JHfreg�yJ2

2

trace Im�HH
reg

� �� �2
(20)

where H
reg
¼ HH

T
þlI

� ��1
H

T
is a matrix which produces the regularized solution freg when multiplied with y, ie.

freg ¼Hregy. The dominator in Eq. (20) can be computed in OðnÞ operations with the bidiagonalization algorithm in Ref. [16].

The proper regularization parameter l can be chosen by minimization the GCV function and then a stable solution freg can

be sought from Eq. (19).
4. Numerical experiment

To illustrate the efficiency of the proposed force identification algorithm based on the PTIM-MP, with the aid
of the regularization technique to reconstruct the dynamic input force, two numerical experiments are described
in this section. In case 1, two forces exerted on a plane truss framework are reconstructed. This numerical experiment is
designed for verifying the effectiveness of the PTIM-MP with relatively large sampling time steps, and the stability of
regularization solution is also validated simultaneous. In case 2, two forces acting on a free–free frame structure are
identified. This case is mainly to illustrate the effectiveness of the proposed method with different measurement
noise level, when the force identification model is ill-posed, notwithstanding the force identification model founded by
PTIM-MP.

Normalized error measurements are used to access the force identification result. The root mean square (RMS) error in
an estimated force freg is defined as

e%RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðf ðiÞreg�f ðiÞtrueÞ

2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
f ðiÞ2true

q
0
B@

1
CA100% ði¼ 0;1;2; . . . ;NtÞ (21)

where ftrue and freg are the actual force and the estimated one, respectively. In the force identification process, white noise
is added, as Eq. (22), to the calculated responses in order to simulate practical engineering measurement.

ynoise ¼ ycalþNP

ffiffiffiffiffiffiffiffiffiffiffiP
y2

i

q
Nt

0
@

1
AZ (22)

where ycal is the Nt length column vector of calculated responses, ynoise is the noise corrupted version of y in Eq. (7) and Z is
the Nt length vector of normally distributed random numbers with zero mean and variance equal to 1. In general, NP is the
measurement noise level ranging from 0.0 to 1.0.
4.1. Numerical test case 1: a plane truss framework

This plane truss framework consists of 21 link bars as shown in Fig. 1. The length of each horizontal and vertical
pole is 5 m and the lumped mass 1� 103 Kg is concentrated on every node. In this case study, the tensile stiffness
is 3� 107 Nm�2 and the damping ratio of each mode is 0.02. The circular frequencies of this plane truss framework
are obtained as Table 1. Two excitation forces taken as formula (18) are imposed on nodes 7 and 11 in the negative
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Fig. 1. The plane truss framework.

Table 1
The circular frequency of plane truss framework (Hz).

Mode 1 2 3 4 5 6 7

Frequency 16.92 40.75 46.41 78.88 94.67 99.37 106.19

Mode 8 9 10 11 12 13 14

Frequency 111.01 118.04 123.56 138.39 148.24 160.53 169.67

Table 2
Identification errors with different measurement noise and sampling time.

Plane truss framework

Sampling time (s) 0.01 0.02 0.05

Identification error (%) F7 1% 1.52 1.87 7.21

F11 1% 6.88 6.98 11.34

Y.M. Mao et al. / Journal of Sound and Vibration 329 (2010) 3008–3019 3013
direction of y axis.

F7 ¼ 10ð1�cosðptÞÞsinð3ptÞ

F11 ¼ 100te�5t

(
(23)

In this case, the acting time is two seconds and the sampling time interval Dt is 0.01 s, 0.02 s, 0.05 s, respectively. The 1 and
5 percent white noise is added to the calculated responses on nodes 6, 8 and 10, respectively, i.e. NP¼ 0:01;0:05 in formula
(22), and these corrupted responses are used to simulate the measured responses to reconstruct the time history of two
input forces.

From the analysis in Section 3, the condition number of matrix H in force identification model is increasing for a period
of time as the time step is decreasing, i.e. Nt is increasing. The force identification problem will be ill-posed. However, the
large sampling time is used, the round error of force identification model in numerical computation will affect the force
identification results. The PTIM-MP can alleviate this difficulty caused by round error in computation. Table 2 shows the
force identification error computed by formula (21), with different measurement sampling times and 1 percent white
noise. We can see that the identification precision is decreasing as the sampling time argumentation. But the identification
force time history obtained by PTIM-MP with the aid of regularization technique still agrees well with the input force in the
whole time history, as Figs. 2 and 3 plots. Furthermore, the effectiveness of regularization technique is also validated,
Figs. 4 and 5 illustrate the time history of the identified force on nodes 7 and 11 with sampling time 0.01 s and 1 percent
measurement noise. The identified forces obtained by regularization technique and without regularization technique all
agree well with the actual input forces, due to in this case used 1 percent white noise, the problem Eq. (11) can be
considered as a well-posed problem. A condition that insures the stability and well-posedness of Eq. (11) is the Picard
condition [29]. The Picard condition is satisfied when the coefficients juT

i yj decay to zero more quickly than the singular
values si in the Picard plot. The Picard plot in Fig. 6 is shown that the Picard condition is met in case 1 used 1 percent white
noise, and thus the results obtained without regularization technique is also reasonable. The Picard plot in Fig. 7, however,
shows that the coefficients juT

i yj decay to zeros more slowly than the singular values si in case 1 used 5 percent white
noise, hence the force identification problem is ill-posed, and the regularization is needed. The plots in Figs. 8 and 9, show



ARTICLE IN PRESS

0 0.5 1 1.5 2
−1

0

1

2

3

4

5

6

7

8

Time (s)

Fo
rc

e 
(N

)

step 0.01s
step 0.02s
step 0.05s
F11
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Fig. 2. Identification results on node 7 with 1 percent white noise and different sampling time.
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that the identification results obtained by the regularization are still identical with the actual inputs on the whole. It
should be noted that the identification results obtained without regularization are meaningless and are not displayed in
this article. Subsequently, another ill-posed force identification problem will be devised to demonstrate the effectiveness
of PTIM-MP with the aid of regularization technique in the next test case.
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Fig. 8. Force identification results with 5 percent white noise in response.

Fig. 9. Force identification results with 5 percent white noise in response.
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Fig. 10. The free–free frame structure.

Y.M. Mao et al. / Journal of Sound and Vibration 329 (2010) 3008–30193016
4.2. Numerical test case 2: a free–free frame structure

A free–free frame structure is plotted in Fig. 10, consists of 24 beam elements, and each element has 6 degree of
freedoms, the length and section is 0.5 m and 0:3 m� 0:3 m, respectively. The elastic modulus and the density are 300 MPa
and 7800 kgm�3, respectively. Two forces as formula (24) impact on nodes 5 and 13 in the direction of x axis as shown
in Fig. 10.

F5 ¼ 50ð1�cosð2potÞÞsinð6potÞ

F13 ¼ 500t expð�4tÞÞ;o¼ 0:5

(
(24)
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The responses on nodes 4, 6, 8 and 10 are measured for 3 s with sampling time 0.01 s. The white noise level NP in formula
(21) equals 0.05.

In this case the force identification model is also founded by PTIM-MP. The Picard plot in Fig. 11 shows that the singular
values si, coefficients juT

i yj and the ratio juT
i yj=si for increasing i, when the measurement responses y are polluted by 5

percent white noise. In this figure, the singular values si of structural matrix H decay gradually to zero and the ratio
between the largest and smallest nonzero singular values is 7:2831� 103. Based on these observations in Picard plot, one is
able to conclude that this problem is ill-posed. Clearly, in Fig. 11, it is observed that the coefficients juT

i yj decrease more
slowly than the singular values si. The ratio juT

i yj=si is increasing and the white noise in the measured responses y will be
widely amplified and propagated into the reconstructed forces.

To overcome this issue of noise amplification in the inversion process, a regularization technique described in Section 3
is utilized and the optimum regularization parameterl is selected as 9:1829� 10�8 through the GCV criterion for the
Tikhonov regularization in the standard form. Using this optimum parameter, one is able to obtain the reconstructed force
F5 and F13 as plotted in Figs. 12 and 13, respectively. Clearly, in these plots the white noise amplification in the inverse
process is significantly reduced. The reconstructed forces obtained by the PTIM-MP with the aid of regularization
technique match the actual inputs quite well and the RMS error of these reconstructed forces is 6.1 and 23.1 percent,
respectively. While the identification results, achieved by PTIM-MP without regularization technique, have large
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Fig. 13. Force identification results on node 13.
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fluctuations, and the corresponding RMS error is 29.6 and 381.75 percent, respectively. However, the identification results
with regularization technique are still a little fluctuation comparing with the actual inputs. This is mainly due to the fact
that the white noise is intermingled with the dynamic information and purely mathematical techniques cannot absolutely
dealt with this issue.

5. Conclusion

In general, the force identification problem mainly focuses on the affection of white noise in measured responses on
the force identification results. In this work, we explore the influence of round error of force identification model on the
identified results. PTIM-MP can precisely found the force identification model within the scope of general computer
accuracy, while it does not cost much computing time. This precise force identification model can improve the force
identification results in certain extent. However, it does not radically deal with the ill-posedness in force identification
process, and the improved accuracy of force identification model may be still demolished by the white noise in measured
response, thus the regularization technique is needed. Two numerical tests, especially the second, verify this point.
Furthermore, it should be noted that, except for the white noise in measured responses and the round errors of force
identification model, the sensor placement also affects the force identification results. From the results of two numerical
tests, we can see that identification result of F5 is better than that of F13 in numerical test case 2. This is mainly due to the
measurement sensors placement on nodes 4, 6, 8 and 10, where the measurement responses mainly reflect the dynamic
information ofF5. Case 1 is in the same way, the obtained result of F7 appears better than that of F11, because the
measurement response on nodes 6, 8 and 10 contains much more information of F7 than that of F11. The influence of sensor
configuration on force identification is beyond the scope of this paper, and such issue will be discussed in future work. For
a detailed discussion about the sensor placement for force identification, one can consult Refs. [30–31].
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Appendix A. The derivation with exponential superposition method

In general, the second order differential equation of structural system is as follows

M €xðtÞþC _xðtÞþKxðtÞ ¼ rðtÞ (A.1)

where M denotes the symmetric and positive definite mass matrix, C and K denotes positive semidefinite damping and
stiffness matrices, respectively. €xðtÞ, _xðtÞ and xðtÞ denotes the acceleration vector, velocity vector and displacement vector,
respectively. The Eq. (A.1) can be written as Eq. (1) in Hamiltonian forms in state space, with the equation _xðtÞ ¼ _xðtÞ and



ARTICLE IN PRESS

Y.M. Mao et al. / Journal of Sound and Vibration 329 (2010) 3008–3019 3019
the transformation of Eqs. (A.2) and (A.3).

v¼
h
xT pT

iT
; H¼

A D

B E

� �
; f ¼

h
0T rT

iT
(A.2)

p¼M _xþ1
2 Cx; A¼�1

2M�1C

B¼ 1
4 CM�1C�K; E¼�1

2CM�1; D¼M�1 (A.3)

The quantity e�Ht is multiplied on both sides of Eq. (1) in Section 2, and integrating the Eq. (A.4) in time interval ½t0; t�,

e�Ht _vðtÞ ¼ e�HtHvðtÞþe�HtfðtÞ (A.4)

R t
t0

e�Htð _vðtÞ�HvðtÞÞdt¼
R t

t0
e�HtfðtÞdtR t

t0
de�HtvðtÞ ¼

R t
t0

e�HtfðtÞdt

8<
: (A.5)

vðtÞ ¼ vðt0ÞexpðHðt�t0ÞÞþ

Z t

t0

expðHðt�tÞÞfðtÞdt (A.6)

Supposed the input force in integration time interval is constant, the Eq. (A.6) can be formulated as Eq. (2) in Section 2.
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